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Abstract
Correlated Gaussian random fields provide good models for a variety of physical
phenomena including metallic and ocean surfaces, vegetation, geomorphology
and turbulence. Their properties have been studied extensively yet some
aspects of their behaviour are still not fully understood. In particular, the
statistics of the number of samples within a correlated Gaussian random field
which exceeds some threshold (i.e. the support of the random field) have not
previously been analysed in depth. This threshold exceedence problem is
discussed herein with closed-form expressions being presented for the variance
of the support of the random field. Both one-dimensional (time series) and
two-dimensional (image) cases are discussed and the results are extended to a
correlated gamma-distributed random field which is appropriate for many non-
Gaussian applications. The results are validated by comparison with numerical
simulations and an assessment against approximate methods is made which
reveals the superiority of the expressions presented. Potential applications of
the theory are discussed with particular reference to the radar target detection
problem and the modelling of breaking waves.

PACS number: 0250

1. Introduction

The Gaussian random process provides a useful and tractable model for many phenomena
whose ‘first-principles’ description is precluded by its inherent complexity and a lack of
detailed knowledge of its underlying mechanisms. The signals and noise encountered in
communications and detection problems can be modelled by Gaussian processes evolving in
time [1]; the spatial structures exhibited by Gaussian random fields enable them to capture the
salient features of metallic and ocean surfaces, vegetation, geomorphology and turbulence [2].
Consequently, Gaussian processes have been studied intensively for many years. Nonetheless,
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some of their properties are not yet fully understood; in particular, many of the characteristics
of above-threshold excursions in Gaussian random processes have not been analysed in detail.
This paper addresses one of the simplest of these problems: the statistics of the support
of above-threshold excursions of time series and (two-dimensional) random fields. The
expectation value of the duration or area of the support of such excursions is determined by the
single-point statistics of the Gaussian process; its relation to the support of the entire random
field is trivial. However, the calculation of the expectation value of the square of the excursions’
support presents many more difficulties. In fact, Adler’s text [2] states that no analytic progress
can be made towards the solution of this problem beyond that made in the zero-threshold case,
where the ‘arcsine law’ [3] reduces the problem to a relatively simple quadrature. In this
paper we show how significant progress can, in fact, be made in the arbitrary threshold case.
This analysis can be generalized in two ways: the characterization of the probability density
function (PDF) of the excursion support and the extension of the analysis to non-Gaussian
random processes which are important for radar and sonar image understanding [4]. Progress
towards these goals has been limited but significant; an approximate analysis of the PDF is
tractable in the large-threshold limit, while our exact results can be extended to the special, but
practically important, non-Gaussian case provided by the gamma andχ2 processes. Our results
are then applied to time series and random fields of finite support; particular attention is paid
to the variation in the mean-square excursion support as the support of the whole time series or
field is progressively smaller than, comparable with and greater than that of the autocorrelation
function of the Gaussian process. A selection of computer simulation results serves to both
illustrate and verify our analysis.

2. Above-threshold excursions of a Gaussian random process

2.1. Derivation of fundamental results

The one- and two-point statistics of a Gaussian random process are particularly simple;
consequently, we can set up and analyse formal expressions for the mean and mean-square
values of the support of its above-threshold excursions. We will set these up in the case of
a Gaussian random field u, whose values u vary with a two-dimensional spatial coordinate
r ≡ (x, y); the corresponding, but simpler, results for a time series will then be written down
by inspection. The autocorrelation of the values taken by u at two spatially separated points
is given by

〈u(r1)u(r2)〉 = 〈
u2
〉
R(r1, r2) (1)

without any real loss in generality we can take the mean and mean-square values of u to be
zero and one, respectively. Thus we can write the probability density function of values of u
as

P(u) = 1√
2π

exp

(
−u2

2

)
(2)

while the joint PDF of the values u1, u2 taken at positions r1, r2 is

P(u1, u2) = 1

2π
√(

1 − R(r1, r2)2
) exp

{
−
(
u2

1 + u2
2 − 2u1u2R(r1, r2)

)
2
(
1 − R(r1, r2)2

)
}
. (3)

The number of excursions above a threshold U is given by

σ =
∑

r

I (u(r) > U) (4)
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where I (∗) is the indicator function which takes the value 1 when the condition in the argument
is satisfied and 0 otherwise. This is known as the support of the excursions. The mean value
of the support of the excursions is thus given by

〈σ 〉 =
∑

r

P(u(r) > U) (5)

which, in terms of a continuous spatial variable, becomes

〈σ 〉 =
∫
S

d2r

∫ ∞

U

duP (u) = A

2
erfc

(
U√

2

)
. (6)

Here A is the area of the support S of the whole random field and we have identified the
complementary error function [5]; the corresponding result for a time series is obtained by
replacing A by its duration T . The mean-square value of the support of above-threshold
excursions is given by〈

σ 2
〉 = ∑

r1

∑
r2

P(u(r1) > U, u(r2) > U) (7)

which in terms of a continuous spatial variable, becomes〈
σ 2
〉 = ∫

S

d2r1

∫
S

d2r2

∫ ∞

U

du1

∫ ∞

U

du2 P(u1, u2)

=
∫
S

d2r1

∫
S

d2r2

∫ ∞

U

du1

×
∫ ∞

U

du2
1

2π
√(

1 − R(r1, r2)2
) exp

{
−u2

1 + u2
2 − 2u1u2R(r1, r2)

2
(
1 − R(r1, r2)2

)
}
. (8)

In the time series case we have〈
σ 2
〉 = ∫ T

0
dt1

∫ T

0
dt2

∫ ∞

U

du1

∫ ∞

U

du2 P(u1, u2)

=
∫ T

0
dt1

∫ T

0
dt2

∫ ∞

U

du1

×
∫ ∞

U

du2
1

2π
√(

1 − R(t1, t2)2
) exp

{
−u2

1 + u2
2 − 2u1u2R(t1, t2)

2
(
1 − R(t1, t2)2

)
}
. (9)

Thus we see that 〈σ 〉 is independent of the correlation function R. However,
〈
σ 2
〉
does depend

on R and its spatial variation within S; expression (8) has been derived elsewhere [2, 6]. When
the threshold U takes the value zero the integrals over u1, u2 can be carried out analytically to
give

〈
σ 2
〉
U=0 = A2

4
+

1

2π

∫
S

d2r1

∫
S

d2r2 sin−1 (R(r1, r2)). (10)

However, the apparent intractability of the integral over u1, u2 has presented a barrier to further
progress in the general case. This can be overcome by first writing the joint probability of the
correlated Gaussian variables in terms of the characteristic function

P(u1, u2) = 1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 exp {−i(k1u1 + k2u2)} exp

{− 1
2

(
k2

1 + k2
2 + 2k1k2R

)}
.

(11)
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Since ∫ ∞

U

du1 exp (−ik1u1) = exp (−ik1U)

ik1
(12)

we see that

σ̂ (R)2 ≡
∫ ∞

U

du1

∫ ∞

U

du2 P(u1, u2)

= − 1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2

exp(−i(k1 + k2)U)

k1k2
exp

{− 1
2

(
k2

1 + k2
2 + 2k1k2R

)}
(13)

so that

dσ̂ (R)2

dR
= − 1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2 exp {−i(k1 + k2)U} exp

{− 1
2

(
k2

1 + k2
2 + 2k1k2R

)}
.

(14)

Comparison with equation (11) reveals that

dσ̂ (R)2

dR
= P(U,U) = 1

2π
√

1 − R2
exp

{
− U 2

(1 + R)

}
(15)

and this simple differential equation may be solved to give

σ̂ (R)2 = σ̂ (R0)
2 +

1

2π

∫ R

R0

dη
1√

1 − η2
exp

{
− U 2

(1 + η)

}
. (16)

If R0 = 0 then the bivariate Gaussian is uncorrelated so that

σ̂ (0)2 = 1

2π

{∫ ∞

U

du exp

(
−u2

2

)}2

=
{

1

2
erfc

(
U√

2

)}2

. (17)

Alternatively, if R0 = 1 then the bivariate Gaussian is fully correlated and the joint PDF is
proportional to δ(x − y) so that

σ̂ (1)2 = 1√
2π

∫ ∞

U

du exp

(
−u2

2

)
= 1

2
erfc

(
U√

2

)
(18)

whilst if R0 = −1 then the bivariate Gaussian is fully anticorrelated and the joint PDF is
proportional to δ(x + y) so that, if U � 0,

σ̂ (−1)2 = 0. (19)

In this latter case, substitution into equation (16) gives the simple result for U � 0 that

σ̂ (R)2 = 1

2π

∫ R(r1,r2)

−1
dη

1√
1 − η2

exp

{
− U 2

(1 + η)

}
. (20)

In some ways equation (20) is our principal result; the remainder of the paper will be
concerned with its analysis, application and generalization.
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2.2. Asymptotic limits

2.2.1. Small-threshold limit. When the threshold u is set to zero (20) leads to the familiar
result (10). However, when the threshold u is small but not zero we consider the integral

F(R) =
∫ R

0
dη

1√
1 − η2

exp

{
− U 2

1 + η

}
. (21)

Expansion of the exponential term in the integrand leads to

F(R) = sin−1(R) +
∞∑
n=1

(−U 2)n

n!

∫ R

0

dη

(1 − η2)1/2(1 + η)n+1/2
. (22)

The integrals occurring in this series are best evaluated by recursion. If we define

Pn =
∫ R

0

dη

(1 − η2)1/2(1 + η)n
(23)

then

Pn(R) = Pn−1(R) −
∫ R

0

η dη

(1 − η2)1/2(1 + η)n
(24)

which an integration by parts reduces to

Pn(R) =
(
n − 1

2n − 1

)
Pn−1(R) +

1

(2n − 1)

(
1 − (1 − R2)1/2

(1 + R)n

)
. (25)

From this we see straightaway that

P1(R) = 1 − (1 − R2)1/2

(1 + R)
(26)

from which the other integrals can be generated, if required. Here we merely note that

F(R) = sin−1(R) −
(

1 − (1 − R2)1/2

(1 + R)

)
U 2 + O(U 4). (27)

2.2.2. Large-threshold limit. To determine the large-threshold behaviour of (20) we need to
transform the integrand such that it contains a term of the form exp(−sU 2) and also transform
the integration limits to cover the range [0,∞) so that an asymptotic expansion can be obtained
by using Watson’s lemma [7]. This is achieved by making the substitution

s = 1

(1 + η)
− 1

(1 + R)
(28)

which results in a new integral formulation

σ̂ (R)2 = 1

2π
exp

{
− U 2

(1 + R)

}
(1 + R)3/2

(1 − R)1/2

×
∫ ∞

0
ds

exp(−sU 2)

(1 + (1 + R)s)
√
(1 + 2(1 + R)s/(1 − R))

. (29)

Use of Watson’s lemma then gives

σ̂ (R)2 ∼ 1

2πU 2
exp

{
− U 2

(1 + R)

}
(1 + R)3/2

(1 − R)1/2

[
1 − (1 + R)(2 − R)

(1 − R)U 2
+ O(U−4)

]
. (30)
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2.3. Probability density function

So far we have considered only exact expressions for the mean and mean-square values of
the support of above-threshold excursions. These provide us with only limited insight into
the form of the PDF of the above-threshold support. However, it is possible to construct such
a PDF in the limit of a large threshold. To this end we note (see Adler [2, chapter 6]) the
following properties of high-threshold excursions in a random field with a support of area
A.

(a) The mean number of excursions above a threshold U is given by

〈N〉 = A

√
| det�|
(2π)3

U exp

(
−U 2

2

)
(31)

where

� =
(

Rxx Rxy

Ryx Ryy

)

is a matrix of derivatives of the normalized correlation function of the random variable u.
This has been simplified by exploiting the assumed translational invariance of the system;
Rxx ≡ ∂2R/∂x1∂x2|r1=r2 , etc

(b) The number n of excursions in the area A is Poisson distributed, i.e.

P(n) = 〈N〉n
n!

exp(−〈N〉). (32)

(c) The support s of an individual excursion above the threshold has a negative exponential
distribution:

P(s) = γU 2 exp
(−γU 2s

)
γ = 1

2π

√
| det�|.

(33)

Thus if there are n excursions above the threshold in the area A, the PDF of their total support
is given by

P(σ, n) = (γU 2)nσ n−1

(n − 1)!
exp

(−γU 2σ
)
. (34)

As n is a Poisson-distributed random variable we can form the PDF of the total area of above-
threshold excursions as

P(σ) =
∑
n

P (σ, n)P (n)

= 2 exp (−〈N〉) δ(σ ) + exp
(−〈N〉 − γU 2σ

) 〈N〉γU 2
∞∑
n=0

〈N〉
n!

n
(
γU 2

)n
σ n

(n + 1)!

= 2 exp (−〈N〉) δ(σ ) + exp
(−〈N〉 − γU 2σ

) 〈N〉
√

〈N〉γU 2

σ
I1
(
2
√

〈N〉γU 2σ
)
. (35)

For n = 0, P(σ, n) has been identified with the delta function. Furthermore, the infinite series
occurring here has been related to the expansion of the modified Bessel function of the first
kind and first order [5, equation (9.6.10)].
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PDFs of this form have been considered in a variety of contexts. The work of Clements
and Yurtsever on the breaking area model of sea clutter [8] is one of these, two others are
provided by Cox and Miller [9]. Thus exercise 5 in chapter 4 of this text presents (35) as
the PDF of a sum of a Poisson-distributed number of independent exponentially distributed
random variables, while exercise 9 in chapter 5 highlights an interesting connection with the
diffusive description of the branching process. Once we have constructed this PDF we can
calculate its moments. In particular, the mean and mean square of σ can be evaluated to
give

〈σ 〉 = 〈N〉
γU 2

= A√
2πU

exp

(
−U 2

2

)
〈
σ 2
〉 = 〈N〉(

λU 2
)2 (2 + 〈N〉)

var(σ )

〈σ 〉2
= 2

〈N〉 .

(36)

The first of these is the high-threshold asymptotic form of (4).

3. Above-threshold excursions of gamma and χ squared random processes

The mean-square value of the support of above-threshold excursions of a correlated Gaussian
process has been analysed using an approach based on the characteristic function; it will now
be seen how a similar approach can be applied to a class of correlated gamma processes.
This is of importance for applications such as detection in radar and sonar images where
the background clutter is better modelled by non-Gaussian distributions such as the gamma
distribution [4].

The general form of the multivariate Gaussian PDF, of which [3] is the bivariate case,
arises from the superposition of a number of uncorrelated Gaussian contributions reflecting
an underlying physical mechanism. This multivariate Gaussian PDF satisfies the necessary
conditions that the marginal distributions are Gaussian and that the covariance matrix has the
desired form. It is possible to construct other joint PDFs which satisfy the same conditions
but these do not have the same physical basis and are thus of limited physical importance. In
contrast, as has been observed by Blacknell [10], there are no such compelling arguments which
might identify the joint PDF of a correlated random variable with gamma-distributed marginals.
There is, however, a class of correlated gamma processes which is analytically tractable and
for which the evaluation of the mean-square value of the support of above-threshold excursions
can be carried through much as in the Gaussian case.

Consider two correlated, positive-valued random variables z1, z2 for which the
characteristic function is given by

C(s1, s2) = 1(
1 + α(s1 + s2) + α2(1 − ζ )s1s2

)ν . (37)

It is straightforward to show, using Laplace inversion techniques, that the marginal PDFs of
z1, z2 each have the familiar gamma form

P(z) = 1

αν&(ν)
zν−1 exp

(
− z

α

)
(38)
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where ν is the order parameter and α = µ/ν gives a mean µ and variance µ2/ν. The
characteristic function may be used to determine the moment 〈z1z2〉 by taking the derivative
with respect to s1, s2 and setting s1 = 0, s2 = 0 to give

〈z1z2〉 = µ2

ν
(ν + ζ ) (39)

which, when normalized, gives the correlation coefficient ζ . On taking the Laplace transform
of (37), the full bivariate PDF is found to be

P(z1, z2) = 1

(2π i)2

∫
C1

ds1

∫
C2

ds2
exp(s1z1 + s2z2)(

1 + α(s1 + s2) + α2(1 − ζ )s1s2
)ν

= (z1z2)
(ν−1)/2

αν+1(1 − ζ )ζ (ν−1)/2&(ν)
exp

(
− (z1 + z2)

α(1 − ζ )

)
Iν−1

(
2
√
ζz1z2

α(1 − ζ )

)
. (40)

This PDF describes the two correlated χ2 variables which result when a number of correlated
Gaussian pairs are squared and added together (Armstrong and Griffiths [11]). Wong [12]
obtains an expression closely related to (40) by explicit solution of the Fokker–Planck equation
satisfied by the conditional probability P(z2|z1) for values z1, z2 of a gamma-Markov process
occurring at a time t apart. The expressions are identical when the identification ζ = exp(−t)

is made.
The mean value of the support of the excursions is given by

〈σ 〉 =
∫
S

d2r

∫ ∞

U

duP (z) = A
& (ν,U/α)

&(ν)
(41)

whilst the mean-square value is obtained from σ̂ (ζ )2. Following the same reasoning as in the
previous section gives

σ̂ (ζ )2 =
∫ ∞

U

dz1

∫ ∞

U

dz2 P(z1, z2)

= 1

(2π i)2

∫
C1

ds1

∫
C2

ds2
1

s1s2

exp(s1U + s2U)(
1 + α(s1 + s2) + α2(1 − ζ )s1s2

)ν (42)

so that

dσ̂ (ζ )2

dζ
= α2ν

(2π i)2

∫
C1

ds1

∫
C2

ds2
exp(s1U + s2U)(

1 + α(s1 + s2) + α2(1 − ζ )s1s2
)ν+1

= 1

(1 − ζ )ζ ν/2&(ν)

(
U

α

)ν

exp

(
− 2U

α(1 − ζ )

)
Iν

(
2U

√
ζ

α(1 − ζ )

)
. (43)

Taking the fully decorrelated limit as an initial value, integration of this differential equation
gives

σ̂ (ζ )2 =
(
& (ν,U/α)

&(ν)

)2

+
1

&(ν)

(
U

α

)ν ∫ ζ

0

dξ

(1 − ξ)ξν/2
exp

(
− 2U

α(1 − ξ)

)
Iν

(
2U

√
ξ

α(1 − ξ)

)

(44)

where use has been made of the incomplete gamma function &(ν, ϕ) = ∫∞
ϕ

dt tν−1 exp(−t).
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4. The evaluation of 〈σ〉 and 〈σ2〉 for stationary Gaussian processes

The mean value of the support of above-threshold excursions of a Gaussian process is given by
the relatively simple result (6) whilst, on substituting the result (20) into (8), an expression for
the mean-square value of the above-threshold support is obtained. In principle, this expression
can be evaluated numerically although, in practice, this will involve an integration over five
variables for the two-dimensional case which makes the calculation very computationally
demanding. However, in the commonly occurring case where the Gaussian process is
stationary, i.e. the correlation function satisfies the condition R(r1, r2) = R(r1 − r2), it
is possible to replace the integrations over the separate coordinates r1, r2 by an integration
over the single difference coordinate r1 − r2. The integration over the dummy variable η in
(20) can also be eliminated by an integration by parts. By using these simplifications it is
possible to calculate 〈σ 〉2 rapidly and accurately for Gaussian random fields with arbitrary
correlation properties.

Consider first the one-dimensional time-series case. Using a number of integrations by
parts, the following identity may be obtained:∫ T

0
dt1

∫ T

0
dt2 φ(t1 − t2) =

∫ T

0
dt (T − t)φ̂(t) (45)

where φ̂(t) = φ(t) + φ(−t). To make contact with the calculation of
〈
σ 2
〉
, the function φ(t)

is identified with the function σ̂ (R(t))2. The first term on the right-hand side of (45) can be
written as ∫ T

0
dt T φ̂(t) = T

∫ T

−T

dt φ(t) ≈ T

∫ ∞

−∞
dt φ(t)

= T

2π

∫ ∞

−∞
dt
∫ R(t)

−1
dη

1√
1 − η2

exp

(
− U 2

(1 + η)

)
(46)

which dominates as the area of the support of the function becomes larger; the other terms are
the lower-order corrections. Thus (46) provides an approximation which reduces the number
of integrations required in a numerical calculation from three to two. However, alternatively,
a further integration by parts of (45) yields∫ T

0
dt1

∫ T

0
dt2 φ(t1 − t2) = T 2

2
φ̂(T ) − 1

2

∫ T

0
dt

dφ̂(t)

dt
(2T t − t2)

= 1

2π

{
T 2
∫ R(t)

0
dη

1√
1 − η2

exp

(
− U 2

(1 + η)

)

−
∫ T

0
dt

1√
1 − R(t)2

exp

(
− U 2

(1 + R(t))

)
dR(t)

dt
(2T t − t2)

}
(47)

where time-reversal invariance of the autocorrelation function, R(t) = R(−t), has been
exploited. The expression (47) provides an exact method for calculating

〈
σ 2
〉

which requires
only a single integration, thus making it amenable to numerical calculation.

The case of a two-dimensional image follows similar reasoning. Several integrations by
parts yield the identity∫ L

0
dx1

∫ L

0
dy1

∫ L

0
dx2

∫ L

0
dy2 ,(x1 − x2, y1 − y2)

=
∫ L

0
dx
∫ L

0
dy (L − x)(L − y),̂(x, y) (48)
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where ,̂(x, y) = ,(x, y) + ,(x,−y) + ,(−x, y) + ,(−x,−y). The first term on the right-
hand side of (48) can be written as∫ L

0
dx
∫ L

0
dy L2,̂(x, y) = L2

∫ L

−L

dx
∫ L

−L

dy ,(x, y) ≈ L2
∫ ∞

−∞
dx
∫ ∞

−∞
dy ,(x, y)

= L2

2π

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ R(x,y)

−1
dη

1√
1 − η2

exp

(
− U 2

(1 + η)

)
(49)

thus providing an approximation which reduces the number of integrations required from five
to three. An alternative approach is based on the observation that

(L − x)(L − y) = 1
2∇ · (r (L2 − 2

3L(x + y) + 1
2xy

))
(50)

so that∫ L

0
dx
∫ L

0
dy (L − x)(L − y),̂(x, y)

= − 1
2

∫ L

0
dx
∫ L

0
dy
(
L2 − 2

3L(x + y) + 1
2xy

)
r · ∇,̂(x, y)

+ 1
2

∮
dl · r

(
L2 − 2

3L(x + y) + 1
2xy

)
,̂(x, y). (51)

The line integral is taken round a square circuit with corners at (0, 0), (0, L), (L,L), (L, 0).
If the sides, going around anticlockwise from (0, 0), are labelled (a), (b), (c), (d), respectively,
then on sides (a) and (d) dl · r = 0, whilst on (b) and (c) dl · r = L dy and L dx, respectively.
Thus (51) can be simplified to give∫ L

0
dx
∫ L

0
dy (L − x)(L − y),̂(x, y)

= − 1
2

∫ L

0
dx
∫ L

0
dy

(
L2 − 2

3L(x + y) + 1
2xy

)
r · ∇,̂(x, y)

+
1

12
L2
∫ L

0
dζ (2L − ζ )

(
,̂(ζ, L) + ,̂(L, ζ )

)
. (52)

The integration over the dummy variable implicit in the final term can be removed by a further
integration by parts which yields∫ L

0
dx
∫ L

0
dy (L − x)(L − y),̂(x, y)

= − 1
2

∫ L

0
dx
∫ L

0
dy

(
L2 − 2

3L(x + y) + 1
2xy

)
r · ∇,̂(x, y)

+ 1
4L

4,̂(L,L) − 1
24L

2
∫ L

0
dζ ζ(4L − ζ )

{
d,̂(ζ, L)

dζ
+

d,̂(L, ζ )

dζ

}
. (53)

The presence of the derivative terms eliminates the integration over the dummy variable in
(20), thus leaving an exact expression which requires only a double integration for evaluation.

So far attention has been confined to random fields that have square supports; this
restriction can be relaxed by scaling one of the spatial variables to produce a rectangular
support.
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5. Comparison of theory with results of simulation

In this section, the theoretical results which have been derived are validated by comparison of
their predictions with the measured properties of simulated random fields. Correlated Gaussian
random fields have been generated by filtering white Gaussian noise in the frequency domain
with the square root of the desired power spectrum. Two ACF shapes have been considered
these being firstly a bidimensional Gaussian ACF with functional form

R(x, y) = exp
{−a2(x2 + y2)

}
(54)

and secondly a bidimensional, double-sided negative exponential ACF with functional form

R(x, y) = exp {−a(|x| + |y|)}. (55)

The images of figure 1 show random realizations of these GRFs. Figure 1(a) has been generated
using the Gaussian ACF with a = 1/

√
500 whilst figure 1(b) has been generated using the

double-sided negative exponential with a = 1
10 . In the former case the ACF is circularly

symmetric, whilst in the latter case the ACF has stronger correlations along the grid axes. This
accounts for the different textural effects in the two images.

The mean number of excursions above a threshold depends simply on the single-point
statistics and is given by equation (6). The variance of the number of excursions is obtained
from equations (8) and (20) and can be approximated by equation (49) for short correlation
lengths. Alternative expressions for the mean and variance arise from the PDF approximation
for high threshold developed by Adler [2] and are given by equation (36). Figures 2(a) and (b)
show the variation of the mean and standard deviation of the percentage of above-threshold
excursions for varying threshold. The full curves illustrate the simulation results, whilst the
short-broken curves arise from the Adler high-threshold approximation and the long-broken
curves arise from equations (6) and (49). A bidimensional Gaussian ACF was used with
a = 1 which represents a short correlation length appropriate for the use of equation (49).
It be seen that the theoretical curves derived herein provide a very good fit to the simulation

Figure 1. (a) GRF realization using ACF of equation (54) and a = 1/
√

500; (b) GRF realization
using ACF of equation (55) and a = 1

10 .
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Figure 2. (a) Mean value; (b) standard deviation of the percentage of samples above threshold:
full curve, simulation results; short-broken curve, Adler approximation and long-broken curve,
theoretical predictions.

measurements. The Adler approximation is satisfactory at high thresholds of about three
standard deviations above the mean but the predictions are very poor at lower thresholds.
Thus the Adler result has been validated for the regime in which it is appropriate and indeed
provides a full PDF which is appropriate in this regime. For lower thresholds, it is not valid to
use the Adler approximation, but it has been shown that the first two moments can be derived
theoretically, the resulting expressions having been validated against simulation results for a
range of thresholds.

The standard deviation depends on the form of the ACF and in the above example a
short correlation length was used so that the approximation of equation (49) was appropriate.
When the correlation length becomes large in comparison with the size of the image this
approximation will be less appropriate and the predictions will tend to deviate significantly
from the actual behaviour. However, the exact expression of equation (53) provides an accurate
prediction whatever the correlation length as is illustrated figures 3 and 4.

Each graph shows the variation of standard deviation against threshold using in figure 3(a)
a Gaussian ACF with a = 1/

√
500, in figure 3(b) a negative exponential ACF with a = 1

10 ,

in figure 4(a) a Gaussian ACF with a = 1/
√

5000 and in figure 4(b) a negative exponential
ACF with a = 1

50 . It can be seen that, as the correlation length increases, the approximation of
equation (49) (short-broken curve) increasingly overestimates the standard deviation, whilst
the exact expression of equation (53) (long-broken curve) provides a very good fit to the
simulation results (full lines) and is thus validated.

It is interesting to note that the standard deviation for a given threshold and ACF increases
as the correlation length increases. This reflects the fact that a longer correlation length allows
less variation within a given image size and so there is less opportunity for statistical variations
to average out within the image. There is a tendency for image values to remain within a
smallish range over large areas of the image and hence to provide a correspondingly large
number of threshold exceedences or non-exceedences. Thus a greater variation in the number
of exceedences for a given threshold results.
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Figure 3. Standard deviation for (a) Gaussian and (b) negative exponential of intermediate
correlation length using an approximation of equation (49) (short-broken curve), exact expression
of equation (53) (long-broken curve) and simulation (full curves).

Figure 4. Standard deviation for (a) a Gaussian and (b) a negative exponential of very long
correlation length using the approximation of equation (49) (short-broken curve), exact expression
of equation (53) (long-broken curve) and simulation (full curves).

In section 3 it was seen how the analysis could be extended to a gamma-distributed
process to produce the fundamental result of equation (44). Validation of this expression
has been addressed using correlated, gamma-distributed time series together with the exact
expression given by the first equality of equation (47). In this case φ(t) is given by σ̂ (R(t))2

obtained from equation (44) with the first term on the right-hand side giving 〈σ 〉2, which is
subtracted in the calculation of the variance to leave the second term on the right-hand side as
the only contribution to the variance. Correlated time series were generated using the method
of Armstrong and Griffiths [11] in which a number of correlated Gaussian sequences are
squared and added element by element. If n sequences are used then the resulting sequence
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Figure 5. Standard deviation for gamma-distributed time series with unit mean and (a) order
parameter of 2; (b) order parameter of 4 using exact expression of equation (47) (broken curves)
and simulation (full curves).

is a correlated gamma distribution with order parameter ν = n/2. Division by n after the
addition was used to obtain a unit mean. The normalized ACF of the Gaussian sequences was
chosen to be

R(t) = exp

(
− t2

l2

)
(56)

which must be squared to give the normalized ACF of the resulting gamma-distributed
sequence. Two simulations were performed, each having l = √

500, with the first using
n = 4 ⇒ ν = 2 and the second using n = 8 ⇒ ν = 4. The variation with threshold
of the standard deviation in the percentage of samples exceeding that threshold is shown in
figure 5.

It can be seen that once again the exact expression gives an excellent fit to the simulated
results thus validating the analysis. It should be noted that, for a given threshold, the standard
deviation for ν = 2 is generally greater then the standard deviation for ν = 4. This is a result of
the variance of the gamma distribution, σ 2 = µ2/ν, being larger for smaller-order parameters
and hence causing greater variation in the number of threshold exceedences.

6. Discussion and conclusions

The use of a threshold to identify anomalous statistical events is a fundamental element of
statistical decision theory [13]. Of particular interest is the target detection problem in which
anomalously bright pixels are identified within a statistically homogeneous region and flagged
as potential targets. A false alarm occurs if a target is declared when no target is actually
present as a result of statistical fluctuations of the background. It is important to know the
number of times such false alarms will occur in order to understand the performance of a
target detection scheme. This is given by the mean of the number of threshold exceedences
and is dependent only on the single-point statistics of the background. Thus, over a large,
statistically homogeneous region, there will be a single false alarm rate which is easily
calculated. However, if the false alarm rate is calculated over smaller sections within this
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large region it will be seen to fluctuate. Some of the smaller sections will contain very
few false alarms, whilst others may contain a large number of false alarms. This will
be particularly evident if the background statistical process is correlated with a correlation
length which is significant in comparison to the length scale of the smaller sections. The
consequent clustering of false alarms could prove deceptive if not anticipated since it could
suggest a grouping of targets which might lend the hypothesis of the presence of targets
more strength than would a similar number of isolated detections. For example, in a radar
image of a potential battlefield, the contextual information that tanks will tend to travel
in battalions may be used to reinforce an initial detection stage. A clustering of false
alarms could be interpreted as such a grouping and thus the confidence that this was a
true detection would be erroneously increased. Thus it is important to understand how the
number of threshold exceedences per section will fluctuate from section to section so that
such clustering can be anticipated. The analysis presented in this paper has derived the
theoretical results which are required to assess this variation for both correlated Gaussian
random fields and correlated gamma-distributed random fields. The former is relevant for
detection against Gaussian noise and also for the identification of peaks in the output of
a template-matching process where the central limit theorem dictates that the output of
the template correlation will tend to a Gaussian distribution. The latter is relevant for
detection against gamma-distributed noise which can provide a reasonable model of the non-
Gaussian statistics observed in coherent imaging systems such as synthetic aperture radar or
sonar.

It should be recognized that correlated random fields provide useful models for a wide
variety of physical phenomena and that the results which have been presented here may well find
application in fields other than image analysis and interpretation. Thus, for example, Clements
and Yurtsever [8] identify above-threshold excursions of a two-dimensional Gaussian random
field (representing the vertical acceleration of the ocean surface) with breaking wave events
that contribute significantly to radar ocean backscatter; the statistics of the supports of these
exceedences are related to those of the resulting sea clutter returns. Clements and Yurtsever
evaluate the variance in sea clutter power, using a high-threshold approximation to σ̂ (R)2

that is similar to but not identical to (30), incorporated into the approximate result (49). The
results presented in this paper could be applied directly in this context. The use of the exact
form of σ̂ (R)2 would allow a more controlled test of the validity of their model. Furthermore,
the corrections to (49) implicit in the exact result (53) should be of particular importance in
the modelling of high resolution radar sea clutter, in which finite range cell size effects are
important. Similar improvements might be anticipated in the wide range of applications of
Gaussian and other random fields listed by Adler [2], about which the authors are not qualified
to speculate.
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